
Easy Implementation of Sensing Systems
for Smart Living

Paolo Bellagente, Claudio Crema, Alessandro Depari, Alessandra Flammini,
Giovanni Lenzi, Stefano Rinaldi, Angelo Vezzoli

Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy.
e-mail: alessandro.depari@unibs.it

Abstract—Nowadays system architectures based on Internet
of Things (IoT) are becoming a pervasive topic in several
applications. Smartphones integrate a growing number of high
quality sensors and often they are used as gateways for external
sensors, wearable sensors or sensors for ambient assisted living.
Several recent projects about smart cities and smart living are
experiencing sensory data management by means of
smartphones, resulting in large data flow and battery power
concerns. In these architectures, using sensors embedded within
the smartphone is trivial, and several reliable Applications
(APPs) are available; on the contrary, APPs managing external
sensors have high Source Line Of Code (SLOC), especially if
sensors of different vendors are considered and if the APPs need
a high level of personalization. In this work, a solution to easily
develop Android APPs handling remote sensors, even of different
type and manufacturers, is employed in the context of a smart
living application. The proposed approach is based on a
framework that allows achieving an easy development system
architecture, exploiting the Bluetooth 4.0-4.1 technologies. First
implementations focused on safety in a Smart City projects are
discussed.

Keywords—Sensing Systems; System Architecture; Easy
Development; Hardware/Software Integration; IoT; Android

I. INTRODUCTION

Despite the lack of a unique definition, Internet of Things
(IoT) is usually addressed as “the combination of distributed
information processing, pervasive wireless networking and
automatic identification” [1]. In other terms, IoT means
introducing the possibility to interact directly with a physical
entity to modify it or to retrieve information about it, on-
demand and independently from the location. To achieve this
scenario, sensors, actuators and elaboration nodes could be
deployed and connected into three ways as reported in Fig. 1:

 Direct Wireless Area Network (WAN) from sensor to the
Internet.

 Nodes connected through an ad-hoc gateway that provides
the WAN connection (usually on a 3G/WiFi link).

 Nodes connected through general-purpose platforms,
already deployed for different use, acting as gateways for
the considered application. A typical example could be a
modern Smartphone acting as gateway between its own
embedded sensors or an external, complex, sensory system

and the Cloud.

Sensor Gateway

Sensor

Sensor

Sensor

PAN

Sensor Sensor

Sensor

...
... ...

(A) (B) (C)

Smartphone Sensor

SensorSensor

Fig. 1. Examples of architectures. PAN is the acronym for Personal Area
Network.

Nowadays, smartphones are pervasive in our everyday
lives; for instance, in the European Union the average number
of such devices for each person was 1.25 in 2014 [2], [3].
Therefore, it is likely that the last of the aforementioned
architectures would be the most widespread in smart living
systems, whereas the others would probably be dominant in
other fields (e.g., automotive and related infrastructures [4]).

Smartphones are naturally equipped with several embedded
sensors and this number is constantly growing. Exploiting such
sensors into an Application (APP) is rather trivial. Conversely,
the use of external sensors/embedded systems is definitely
more complex, and it requires a remarkable programming
effort, especially with a high number and wide typology of
sensors.

Indeed, this is the case of the “Brescia Smart Living”
project, a smart city project funded by the Research and
University Italian Ministry and involving the University of
Brescia and several other local institutional subjects and
companies. The aim of this project is to realize an
infrastructure of services to increase the quality of life of
fragile subjects (e.g., elderly), citizens’ safety, security, and to
achieve a general saving of resources. This is fulfilled by
means of ambient assisted living, teleservices, and inexpensive
helpline systems. To offer such services, a large number of

This work has been partially supported by Smart Cities and Communities
and Social Innovation through the “Brescia Smart Living” under Grant MIUR
SCN_00416, and in part by the University of Brescia Health&Wealth Grant
through “Work, Wealth, Production, Productivity”.

sensors is employed. Sensors are often redundant, to ensure
continuity of service and reliability even in case of
failure/battery exhausting. Users are equipped with a
smartphone where a personalized APP interacts with the
infrastructure and the sensors to provide personalized services.
Due to the large number of deployed sensors, involved
participants (about 3.000), and APP personalization, the use of
traditional approaches for APP development could result in
complex source code, thus not assuring proper efficiency and
reliability.

Similar problems arise in “Work, Wealth, Production,
Productivity”, a multidisciplinary project financed by the
University of Brescia and involving several research groups of
the same University. One of the goal of the project is the
development of a smartphone-based system to assist users and
emergency staff during an emergency evacuation of workplace.
The system architecture is based on indoor localization
obtained with the deployment of a large number of (potentially
different) beacon devices. The user APP should be easily
configured to cope with modifications of the number and
typology of employed beacons.

Smartphones are usually equipped with Operating Systems
(OS); iOS and Android are the most popular in Europe [5]. Due
to the open source nature of Android, the development of APPs
for this OS is easier and can take advantage of a large online
user community; for this reason, in this paper the attention is
focused on Android devices. One of the advantages of using an
OS is the hardware abstraction it provides for embedded
sensors; actual data are read by the OS’s driver, and sensors
from different manufacturers are all accessed the same way by
APPs. For this reason, it is quite straightforward to get data and
information about measurements by means of functions named
callbacks, provided in Android by the native Software
Development Kit (SDK).

External sensors and embedded systems are usually
connected to smartphones by wireless links [6], e.g., Bluetooth
(BT). Android Things (AT) [7] is an OS for external devices
that facilitates data communication with APPs running on
Android Smartphones. Currently, AT is available only for few
complex external devices (e.g., Raspberry Pi). In general, the
integration of external devices could require the development
of a purposely-designed firmware, in order to achieve the
desired data exchange with the (high level and complex)
Android APP. To facilitate this task, some device
manufacturers provide BT Application Programming Interfaces
(APIs). Others furnish evaluation APPs, which typically cannot
be integrated with other device APPs. Thus, the development
of APPs using only one external sensors is a relatively simple
task. On the other hand, the complexity of the APP
significantly increases with increasing number of external
devices; APPs could be less reliable, because of the high
Source Line Of Code (SLOC).

In this paper, a framework for the management of external
devices and the support for easy realization of sensor
management APPs with high level of personalization is
employed in the context of the two aforementioned projects.
This open source framework, called Sensors for Android
Embedded (SAndroidE) [8], currently available on GitHub [9],

is oriented to interface devices by means of low-power
communication standards, such as BT Low Energy (BLE),
since power consumption is typically one of the major
constraints when dealing with wireless portable devices [10].

The paper is structured as follows: in Section II, the system
architecture is described; Section III explains the realized
framework, whereas in Section IV a case study, related to the
aforementioned “Brescia Smart Living” project will be
presented. Finally, conclusions are drawn.

II. SYSTEM ARCHITECTURE

A. Actual Scenario

Nowadays, the smartphone is a device widely used as
general-purpose platform to achieve many different goals. For
example, in [11] the high-resolution camera of the smartphone
is used to implement an APP for skin self-examination and to
improve the early diagnosis of Melanoma. In addition to the
assistance in the self-examination, the APP allows the user to
gather further information about the disease improving the user
awareness as well as right behaviors. It is possible to detect the
posture of the user [12], taking advantage of the smartphone’s
accelerometers and a suitable unsupervised (no a priori
information needed) learning algorithm. Possibilities and
performance could be improved if external hardware is
connected through one of the many I/O channels of a
smartphone. The market offers a large set of devices designed
to add sensing capabilities to smartphones, as pressure,
humidity, temperature and air quality sensors. Speaking about
medical applications, examples are represented by sensors of
blood pressure and oxygen saturation, heart rhythm and rate,
body temperature, fatigue levels, respiration rate, blood and
tissue glucose, walking distance, step count and many others,
which can be monitored by means of dedicated devices [13].

Exploiting the BT channel for connecting an ECG sensor,
for example, it is possible to use a smartphone as multi-lead
ECG Monitoring System [14], [15], [16] as it can be turned
into an electronic stethoscope, using the internal microphone,
or linking an external one [17], [18]. In these projects, the
smartphone provides the necessary computational power as
well as the suitable communication channel to the Cloud. It is
possible to combine multiple sensors to achieve more complex
or accurate solutions, transforming the smartphone in an
advance gateway which could completely avoid the human
intervention, automatically delivering data to specific on-line
services, as achieved for example in [19]. Besides digital
health, many other application sectors are taking advantage of
the smartphone platform as sensors gateway; an example of
that are building automation systems [20] that can control
various functions within a house, such as light control,
heating, air conditioning, etc.

The implementation of any of the above solutions is not a
trivial task, especially if more than one external device is used
besides the smartphone. Fig. 2 shows the conceptual software
blocks that a programmer has to handle to implement a
two-sensor application in Android environment.

Fig. 2. Software conceptual blocks to be handled by a programmer of a two-
sensors application in Android environment.

Starting from the bottom of the figure, as the Android OS
can be installed on different hardware of different
manufacturers, the programmer has to understand the hardware
characteristics and how the physical layer of the
communication link works. On the next level, he has to take
care of the BT services (included in the BT protocol), needed
to use the communication channel and to implement the
transmission protocol as well as the messages structure and
mechanics. After that, sensor-APP protocols, based on the
underlying BT protocol, will be managed. Finally, the
programmer has to cope with the Android OS for the
development of a suitable graphic User Interface (UI). If more
than one external sensor is used, the programmer should
implement a suitable logic, to ensure the safe coexistence of all
the hardware, as well as a user interface that could expose the
new functionalities. This device-oriented structure, in
multisensory scenarios, leads to APPs in which the sensors
orchestration logic is moved towards the business logic (often
on the Cloud). This generates heavy data flow that follows the
behavior of the sensor (constant sampling, periodic forwarding
or event forwarding) with transmission of duplicated data.

B. SAndroidE-Powered Scenario

The conceptual architecture of the same applications using
the SAndroidE framework is shown in Fig. 3.

Fig. 3. Software conceptual blocks to be handled by a programmer of a two-
sensors application in SAndroidE environment.

The scheme is much simpler, since the programmer does
not have to deal with the device hardware (to understand its
capabilities), and neither with the communication layer (to

connect the external devices). He has to manage only the
Android Environment (to write the logic of his APP). From
the sensor management point of view, SAndroidE offers the
huge enhancement to let the programmer deal only with the
logic of the APP, exploiting a sensor interface that is equal to
the standard one, provided by the Android Environment.
Nothing more has to be learned as data structures, since
callbacks and control logic have APIs in the same format of the
native Android Sensor APIs.

To improve simplicity, in case of user programmable
devices (described in Section III), SAndroidE natively
provides an additional feature, allowing to easily set two
configuration parameters for each remote sensor, in order to
customize its behavior. It is possible to set:

 The sampling interval, which may be reduced or
increased, depending on the type of sensor and overall
system constraints. As an example, a temperature value is
supposed to change very slowly, with respect to an
accelerometer value. Therefore, it makes sense to read the
temperature once every five minutes, or even once per hour,
instead of once per second.

 A threshold, used to determine if the sensor value has
changed. For example, in a temperature sensor, if the
temperature value changes by only 0.05 °C, it probably
makes no sense to transmit new data to the smartphone.
Conversely, if the value changes of 1 °C, new data should
be notified to the smartphone. The threshold is expressed as
percentage of the full scale, as highlighted by the following
pseudocode:

IsDataChanged=(CurrentVoltage-OldVoltage)/(VoltageMax-VoltageMin)>k

where k is the threshold (float value between 0 and 1).

These two parameters could be independently set by the
developer. This allows the developer to reduce computational
load both on the smartphone and on the device, and to reduce
BT bandwidth as well, due to fewer transmissions. Obviously
this also has an impact on reducing the overall consumption of
Wi-Fi/3G bandwidth, if the Android APP has not an algorithm
to discard data when they do not change. Therefore, data
filtering is done directly by the remote device, reducing the
total data amount, CPU cycles, as well as BT and wireless
bandwidth. On the contrary, battery duration increases.

III. THE REALIZED FRAMEWORK

As already mentioned, SAndroidE allows data collection
from external devices and sensors. In order to do that, it
exploits a collection of component and features, shown in
Fig. 4 and detailed hereinafter.

 An Android library written in Java, which needs to be
included in any SAndroidE-powered Android APP. This
library abstracts and virtualizes remote devices, regardless
of their type and operating mode.

 Device Descriptor Files, written in eXtensible Markup
language (XML) or JavaScript Object Notation (JSON),
representing a description of the BT Services and

Characteristics provided by the devices, internally used by
SAndroidE to know how to interact with each device.

 API Description Files, written in XML/JSON, representing
the interface to connect and retrieve data from vendors
Cloud servers, using HTTP requests.

 A SAndroidE Configuration Application (not shown in
Fig. 4), used to detect nearby BT devices and give them a
unique ID, used as reference to the device in the
SAndroidE-powered app source code.

Fig. 4 clearly shows how SAndroidE completely abstracts
communication and device-specific application protocols,
giving access to remote resources, by means of simple Java
callbacks.

Depending on the external device typology, SAndroidE can
operate in four different modes, detailed hereinafter.

A. User programmable devices

These devices typically allow the developer (intended as
the user) to write his own application firmware, with custom
logic and algorithms, and to flash it on the device; for example
Arduino, Raspberry Pi, RedBear BLE Nano and many others.
Some of these devices (e.g. Raspberry Pi), thanks to high speed
CPUs (on the order of GHz), RAM memories and persistent
flash memories can provide high performance. On the contrary,
devices like Arduino can be easily programmed even by users
with limited programming skills. Other devices (e.g. ReadBear
BLE Nano), due to their low power consumption, are suitable
for remote 24/7 IoT monitoring with a simple 3.3V battery.
The three aforementioned devices have already been integrated
in SAndroidE. If the user wants to use just basic functions (like

reading voltage level on an analog input pins, or setting a
digital output pin value), it is sufficient to upload the
compatible firmware onto the device; the SAndroidE App will
be already able to exploit the device resources. If the user
wants to perform custom operations with the external device, a
customization of the device firmware needs to be carried out.

B. Non-programmable devices

These devices do not allow the user to perform firmware
flashing, but BT primitives and data exchange protocols are
known; such protocols do not use data encryption, or, if they
do, encrypting keys are known. SAndroidE allows the
communication with these devices by declaring these
primitives and exchange protocol within Device Descriptors
Files, which are the means for the device virtualization. This is
the case for BLE beacons or other very simple devices,
exposing non-sensitive data, like environment temperature,
humidity or similar.

C. Vendor Locked device: data from vendor’s APP

This mode applies to all those devices whose vendor, as
part of its business strategy, has opted for a closed BT data
exchange protocol and encryption, allowing access only by
means of a dedicated proprietary APP. Flic buttons, as an
example, are general purpose BT buttons; they send click
events to the smartphone if pressed, held or double pressed.
Such buttons need to be associated to the dedicated vendor’s
APP first. In this case, the SAndroidE APP works by receiving
notifications by the vendor’s APP.

Fig. 4. Software conceptual blocks to be handled by a programmer of a two-sensor application in SAndroidE environment.

D. Vendor Locked device: data from vendor’s Cloud

This mode applies to all those devices where the vendor, as
part of its business strategy, has opted to provide data only by
accessing the proprietary Cloud (e.g. activity trackers,
cardio-belts, etc…). Fitbit (https://www.fitbit.com) activity
trackers, as an example, require the user to install the
dedicated APP to the smartphone. Such APP contains the
encrypting keys needed to correctly establish the BT
connection with the device and to receive activity data. After
receiving data, the APP uploads them to the vendor’s Cloud,
on the Internet. The user may access personal historical data
by browsing the related website. Fitbit, as many other vendors
that use a proprietary Cloud to store users’ data, (in
compliance with applicable law), also provides a suitable API,
that is an Internet endpoint which guarantees access for users
to their own personal and sensitive data in a programmatic
way. SAndroidE is able to retrieve data from this kind of
devices by means of these APIs, upon user explicit consent.

TABLE I shows the requirements to use SAndroidE with
the aforementioned class of devices. It is important to highlight
that the device interface can be achieved without the need of
modifying the device firmware; only Android and Java
programming skills are required, in order to develop the user
APP. Moreover, SAndroidE is an open source project, thus, if
needed, the customization of the compatible firmware of a
device is still possible.

TABLE I. REQUIREMENTS TO USE SANDROIDE WITH DIFFERENT CLASS
OF DEVICES

 HW Requirements Components Required

A: User
programmable

devices
- BT connection

- BT Device
Description

(XML/JSON file)
- Firmware flashing of

the device
B: Non-

programmable
devices

- BT connection
- BT Device
Description

(XML/JSON file)
C: Vendor

Locked devices:
APP

- BT connection
- Vendor’s APP

installed

- BT Device
Description

(XML/JSON file)

D: Vendor
Locker device:

Cloud

- BT connection
- Vendor’s APP

installed
- Internet connection

- Vendor REST API
Description

(XML/JSON file)

IV. CASE STUDIES IN A SMART CITY PROJECT

In order to test the effectiveness of the proposed
architecture, the aforementioned project “Brescia Smart
Living” has been adopted as a test case. As already mentioned,
ambient assisted living, teleservices, and helpline applications
are provided to fragile people by means of specific
infrastructures and personal smart devices. In particular, for
each user, a smartphone is employed to gather data from a wide
range of embedded and external sensors and to communicate
with the infrastructure, in order to provide the requested
services. The user APP needs to be personalized for each case,
in order to achieve a specific goal with a determined set of
external connected sensors/devices. Due to the large number of
involved users, this operation should be straightforward, still
assuring a high level of reliability.

A brief description of a possible scenario with the
employed external devices is provided hereinafter.

 Estimote beacons Nearables (http://estimote.com/#get-
beacons): these small devices incorporate a tri-axial
accelerometer and a BLE module. They can be attached to
walls or objects, and by means of their internal sensors they
can notice movement. In this specific case, they have been
attached to a medicament box, to see if it has been moved
and consequently to supervise drug intake.

 Flic buttons (https://flic.io/): they are plastic buttons
embedding a BLE module, and they are designed to fulfill
activation tasks. Here, they are used as lifesaver buttons,
which can be place by the user in a handy spot (e.g.,
bedside table).

 RedBear BLE Nano (http://redbearlab.com/blenano): based
on a Nordic chipset, this small device is typically used to
quickly produce prototypes for IoT. In this specific case, it
is physically connected to an analogic sensor that measures
air quality, and it sends its data to the smartphone via a BT
connection.

 Arduino (https://www.arduino.cc/): the well-known
electronics platform is used to drive a LED that acts as
alarm for medicine in-take notification. Since Arduino is
not equipped with a BT module, it is necessary to use a
BLE Shield (http://redbearlab.com/bleshield/) in order to
exploit the BT connection with the smartphone.

 Raspberry Pi (https://www.raspberrypi.org/): the well-
known single-board computer is here used to drive home
lights by means of virtual buttons on the smartphone
screen.

The implementation of the test case in a traditional
approach is quite complex. In fact, various skills and
development tools are needed: C programming and Arduino
Integrated Development Environment (IDE) are needed for
Arduino, JavaScript, (Node.js in particular) and Linux
competence are needed for Raspberry Pi, the online device
platform MBED is necessary for the RedBear BLE Nano, and
specific APIs are needed for the Estimote and Flic device
integration. Moreover, knowledge about the BLE protocol is
probably inevitably. Thanks to the SAndroidE framework, all
these requirements are no longer necessary; it is sufficient to
use an Android APP development environment (such as
Android Studio) and to have some Java code skill.

Moreover, due to the external device virtualization,
SAndroidE APPs leads to a reduced SLOC compared to APPs
developed with a traditional approach. In fact, it has been
estimated that the lines of code (calculated by summing up
Java code and all device specific codes) for the latter case are
about ten thousand, whereas only five hundred lines of code
are enough to manage all the devices in the SAndroidE APP.

Finally, it is important to highlight the multivendor nature
of this approach; sensors from different vendors are managed
by SAndroidE in the same way, thus assuring interoperability
and the easiness of adoption of redundancy strategies to
improve system reliability.

V. CONCLUSIONS

In this paper, the SAndroidE framework is presented as a
solution for designing sensory systems; its use in the context of
a smart living project, also concerning safety and security
issues, is discussed. Such framework offers easiness of
development for Android APPs communicating with external
sensors and/or devices, regardless of the manufacturer. A
sensible SLOC reduction is achieved, thus decreasing the
possibilities of faults and increasing overall reliability.
Moreover, thanks to the simple management of external
resources, easiness of APP personalization and configuration is
offered as well. The provided test case, with strict requirements
in terms of large number of external sensor, APP
personalization, and code reliability, has demonstrated the
validity and the effectiveness of the proposed approach.

REFERENCES
[1] “Towards a Definition of the Internet of Things (IoT)”, IEEE Internet

Initiative, Telecom Italia S.p.A., Milan, May 2015.

[2] https://www.cia.gov/library/publications/the-world-
factbook/rankorder/2151rank.html

[3] http://ec.europa.eu/eurostat/tgm/table.do?tab=table&language=en&pcod
e=tps00001

[4] De Angelis G., De Angelis A., Pasku V., Moschitta A., Carbone P., “A
simple magnetic signature vehicles detection and classification system
for Smart Cities,” Proceeding of the 2016 IEEE International
Symposium on Systems Engineering (ISSE), 3-5 Oct 2016.

[5] http://uk.kantar.com/media/876729/kantar_os_share_jan_2015_final.pdf

[6] Malatras A., Asgari A., Baugé T., “Web Enabled Wireless Sensor
Networks for Facilities Management,” IEEE Systems Journal, vol. 2, no.
4, Dec. 2008.

[7] https://developer.android.com/things/index.html

[8] Rinaldi S., Depari A., Flammini A., Vezzoli A., “Intergrating Remote
Sensors in a Smartphone: the project "Sensors for ANDROID in
Embedded systems",” Proceedings of the 2016 IEEE Sensors
Applications Symposium (SAS), 20-22 Apr 2016.

[9] https://github.com/SAndroidEOfficial

[10] Zhu C., Wang H., Liu X., Shu L., Yang L. T., Leung V. C. M., “A Novel
Sensory Data Processing Framework to Integrate Sensor Networks With
Mobile Cloud,” IEEE Systems Journal, vol. 10, no. 3, Sep. 2016.

[11] S. Vañó-Galván, J. Paoli, L. Ríos-Buceta, and P. Jaén, “Skin self-
examination using smartphone photography to improve the early
diagnosis of melanoma.,” Actas Dermosifiliogr., vol. 106, no. 1, pp. 75–
7, Jan. 2015.

[12] O. Yurur, C. H. Liu, and W. Moreno, “Light-Weight Online
Unsupervised Posture Detection by Smartphone Accelerometer,” IEEE
Internet Things J., vol. 2, no. 4, pp. 329–339, 2015.

[13] G. Appelboom et al., “Smart wearable body sensors for patient self-
assessment and monitoring.,” Arch. public Heal., vol. 72, no. 1, p. 28,
2014.

[14] Hongqiao Gao, Xiaohui Duan, Xiaoqiang Guo, Anpeng Huang, and
Bingli Jiao, “Design and tests of a smartphones-based multi-lead ECG
monitoring system,” in 2013 35th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), 2013,
pp. 2267–2270.

[15] A. Depari, A. Flammini, E. Sisinni, and A. Vezzoli, “A wearable
smartphone-based system for electrocardiogram acquisition,” IEEE
MeMeA 2014 - IEEE Int. Symp. Med. Meas. Appl. Proc., pp. 1–6, 2014.

[16] C. Crema, A. Depari, A. Flammini, E. Sisinni, and P. Bellagente,
“Virtual Respiratory rate sensors: an example of a smartphone based
integrated and multiparametric mHealth gateway”, IEEE Transactions
on Instrumentation and Measurements, ISSN:0018-9456, vol. 66, issue
9, pp. 2456-2463, 2017.

[17] J. Y. Shin, S. L’Yi, D. H. Jo, J. H. Bae, and T. S. Lee, “Development of
smartphone-based stethoscope system,” Int. Conf. Control. Autom. Syst.,
no. Iccas, pp. 1288–1291, 2013.

[18] A. Sinharay, D. Ghish, P. Deshpande, S. Alam, R. Banerjee, A. Pal,
“Smartphone Based Digital Stethoscope for Connected Health – A direct
Acoustic Coupling Technique,” 2016 IEEE First Conference on
Connected Health: Applications, Systems and Engineering
Technologies.

[19] P. Bellagente et al., “The ‘Smartstone’: using smartphones as a
telehealth gateway for senior citizens,” IFAC-PapersOnLine, vol. 49, no.
30, pp. 221–226, 2016.

[20] A. C. Olteanu, G. D. Oprina, N. Ţǎpus, and S. Zeisberg, “Enabling
mobile devices for home automation using ZigBee,” Proc. - 19th Int.
Conf. Control Syst. Comput. Sci. CSCS 2013, pp. 189–195, 2013.

